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SUMMARY 

In this note, we apply a finite element stream function formulation with inter-element penalties to the 
Navier-Stokes equations. The approach is an extension of a technique previously introduced for Stokes. 
flow. The solution is obtained by iterative linearization using successive approximation, and results for a 
standard numerical test case are given. 
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DISCUSSION 

The stream function form of the stationary Navier-Stokes equations in flow domain Q is 

- vA2* + $,(A$)x - $x(A$)y = f ,  (1) 
where v is the viscosity and f is the applied body force. A weak variational form is easily 
developed using a weighted residual approach, and we have: find t,b satisfying the essential 
boundary conditions and such that 

- v 1: A$Aw dx dy - (t,bywx - $xwy)A$  dx dy = f w  dx dy 1* I* (2) 

for all admissible test functions w with w=O and aw/an=O on that part of the boundary aQ 
where essential conditions apply. 

Let the flow domain be discretized as a union of elements Re, e = 1,2,. . . , E with (xi} the 
global finite element basis defining the approximation space H h .  An approximate statement of 
the viscous flow problem may be obtained by replacing $ and w by $ h  and whEHh in equation (2). 
In the present analysis, we are particularly interested in using non-conforming elements in which 
the usual explicit global C' continuity is relaxed and H h  may not be a subspace of the solution 
space.'92 Rather than enforce the continuity of the normal derivative across the interface between 
adjacent elements explicitly, we add a penalty term to the variational problem to obtain 
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for all admissible wh. Here, E > 0 is the penalty parameter and for E -+ 0 the added penalty term 
on element sides s = 1,2,. . . ,S approximately enforces the inter-element constraint condition 
[dt+hh/dn] = 0 on the inter-element sides Ts, where 1.1 denotes the interface jump. Note that in 
this modified variational functional,- reduced integration is used for this penalty term. That is, 
for given functions g, Is(g) is a low-order quadrature approximation to Jr,gds. In a previous 
analysis for the linear p r ~ b l e m , ~  it was shown that the choice of quadrature order may be based 
on rank conditions for an associated hybrid method and thus to the degree of the element basis 
chosen. 

In the solution algorithm the non-linear term is treated iteratively using a successive 
approximation scheme; that is, in each iteration we linearize this term as 

[($p- l))y(wh)x - ($p- l))x(wh)yl  A$p’ dx dy, 6. 
where n is the iteration index. The remaining contributions to the linearized system at each 
iteration are precisely those for the Stokes flow and hence need not be re-evaluated. 

NUMERICAL EXPERIMENT 

As a test problem, we consider the familiar lid-driven cavity example in which the problem is 
defined by equation (1) in the unit square (0,l) x (0,l) together with the boundary conditions: 
t+h = 0 on dR; $,, = 0 on the sides x = 0, x = 1, y = 0; t+h, = 1 on the side y = 1. The unit square 
domain is discretized to a uniform mesh of right cubic (non-conforming) triangles, and the 
inter-element penalty integrals are calculated using a 1 -point Gauss rule. The penalty parameter 
for this calculation was taken as E = Further details on inter-element penalties and on 
the choice of penalty parameter, as well as its effect on the precision of the calculations, are 
given in References 4 and 5. 

The midplane velocity profiles are plotted in Figure 1 for flow at Reynolds numbers of 100 
and 400, using a uniform 6 x 6 mesh. As indicated in the Figure, these results compare reasonably 
well with those of Burggraff6 using a finite difference solution, and with other primitive variable 
finite element The scheme converged after 11 iterations for the case Re = 100 and 18 
iterations for Re = 400 using a tolerance of z = lop3 on the relative error of successive iterates. 
In each case, the starting iterate is Stokes flow. 

We remark that in the above calculations there is no penalty enforcement of normal derivative 
conditions on the exterior boundaries, but rather the data are specified as nodal point values 
with $, = 0 at the corner points (0,l) and ( 1 , l )  and rl/, = 1 on y = 1 for 0 d x 6 1. 

CONCLUDING REMARK 

The idea of using inter-element penalties, appropriately underintegrated, to smooth the 
approximate solution to the fourth-order problem appears practical and overcomes some of the 
difficulties associated with the use of non-conforming elements. Application of this procedure 
to the quadratic triangle and biquadratic quadrilateral merit investigation. 
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Figure 1. Midplane velocity profiles for flow in a cavity at R e  = 100 and R e  = 400 
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